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Abstract

The primary result of this research effort has been the
development of an image algebra that can serve as the foundation

of a common algebraically based image processing language, 1In
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comparison to other existing image algebras, this algebra is

capable of expressing common image processing algorithms and

transforms in terms of its operators,
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Introduction

Current image processing algorithm development is not based
on an efficient mathematical structure that is designed
specifically for image manipulation, feature extraction and
analysis. In general, each researcher develops his own set of
ad-hoc image processing tools, thereby increasing research and
development costs accordingly. The vast increases in image
processing activities throughout the military, industrial and
academic communities are resulting in an immense proliferation of
different operations and architectures that all too often perform
similar tasks. There are progably as many image processing
languages as there are architectures, and all of them differing
in capabilities.

In view of this ever—-increasing diversity of image
processing architectures and languages, the principal
investigator proposed to develop a standard image processing
algebra to serve as a mathematical basis for a common image
processing language. The relationai formalism of an algebraic
image processing language would constitute an invaluable aid in
the design, development, optimization and testing of image
processing algorithms and hardware configurations,

This research effort succeeded in defining a universal ir.age
algebra that could serve as the origin from which a common image
processing language could evolve, As compared to other existing
image algebras, no problems ha. e been encountered in translating

common image processing operc...nc into the language of this




algebra. Because of this enormous success, research efforts are
now contiruing on four fronts: (1) Further theoretical
development of the algebra; (2) Formulation and compilation of a
new image processing language based on this algebra; (3)
Optimization of FLIR algorithms; (4) Design of reconfigurable

VLSI architectures for image processing based on this algebra.,

Technical Aspects of the Research and Research Results

This research, under Air Force grant No. AFOSR~-83-0065, has
b
been involved with the development of a rigorous formulation of a

mathematical foundation for image processing algorithms and
operations. The research proceeded along the following

guidelines:

(1) 1Investigation of existing algebraic structures for image
processing.

(2) The cataloguing, according to task similarity of
existing image processing operations,

(3) Investigation of the relationships between the basic
components <f the catalogued operations,

{4) Extraction of a minimal set of operators in order to
form an algebra capable of expressing all image
transform operations,

(5) Establishment of some basic relationships and theorems

governing the algebra.
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(6) Investigation of the algebra's potential to serve as a
foundation of a common algebraically based image

processing language.,

The investigation of existing image algebras turned out to
be somewhat disappointing. Extracting the.mathematical and
conceptual core of existing algebras (ref. 6,11,12), resulted in
only one structure mathematicians would dare call an "algebra®”.
This structure is equivalent to the Minkowski algebra of sets

(4). Although the literature abounds with so called new

‘PR

techniques - i.e. erosions, dilation closings, openings, rolling

o

ball algorithms, etc. - the algebraic relationship provided by
these techniques can all be found or easily derived from the
algebraic relationships in (4).

Even though many neighborhood operations can be expressed in

|0 i & gk |

terms of the Minkowski algebra, the algebra is extremely limited
in performance (6), incapable of expressing global transforms and
various neighborhood transforms aﬁd can, therefore, never serve
as a universal image algebra. It bécame clear at the initial
stage of this research that a new algebra needed to be defined.
In order to accomplish this task, ~ataloguing and investigating
existing image operations became & necessity.

necause of the "one year" tim: constraints some image
transforms were more thoroughly investigated than others. 1In
particular, emphasis was placed on linear transforms, non-linear
sm:Hthing and enhancement techniques, edge detection schemes,

ir-ge segmentation and background removal. W.K. Pratt's book on
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digital image processing (7) proved to be the most valuable
resource for this particular task.

Investigation of the basic components of the various image
transforms made it clear that we were dealing with only four
basic operations, namely two arithmetic and two logic operations,
However, these four operations are applied-differently in
cellular (neighborhood) processing than in non-cellular

processing, resulting in an algebra of eight binary operators,

The definition of these operators can be found in Appendix 2 and
details concerning the algebra are given in (8).

In order to demonstrate the potential of this algebra to
serve as a basis for a common image processing languaée, we
showed that the algebra is capable of describing all éommonly
used image processing functions. We considered such diverse
processing operations as linear transforms (Fourier transforms,
Walsh transforms, etc.), non-linear filtering and enhancement
techniques, a variety of well-known edge detection algorithms,
gray scale averaging, thresholdiné, and histogram equalization,
In order to minimize the number of operations in the algebraic
formulation of algorithms, we also established some basic
relationships governing the algebra. As mentioned earlier, no
great difficulties were encountered when translating image
operations into our algebraic formulation. A special bonus of
the translation task was the discovery of some new and powerful

image enhancement techniques (9).




Discussions with my colleague Dr. S. Chen of the National
Science Foundation led to the discovery that the algebra is an
*image processing machine” in the abstract sense, and can thus be
used to define and model real architectures. Building on this
idea, we defined a language based systems architecture where the
algebraic algorithms are expressed as data flow graphs that are
mapped to a reconfigurable distributed system (3). 1In view of
recent advances in VLSI technology, such architectures are now
feasible.

In our system, the user inputs image data through a front-
end computer to a distribuﬁfd network which leads to various
operation modules. The acﬁive operation modules drive parallel
processing elements that c;rry out the elementary algebraic
operations and transformations. Configurations for our variable
neighborhood definition are formed through the control of
arbitration networks. Modularity and redundancy will enable the
system to be fault tolerant and expandable,

The main improvement of this.system over some existing
architectures, such as the cytocomputers or the CLIP series, is
the ar‘lity to handle variable neighborhoods and to perform
certai~ image processing algorithms in parallel that are not
feasih!s on current cellular array computers,

L .ide benefit of this research was the development of
software for the VAX-11/780 computer to enable the printing of
gray level images on standard dot-matrix printers. The extremely
low resolution, spatial distortion and slowness of the print

routines provided by Government furnished print routines

i
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necessitated this development. This software will be made
available to AFATL personnel at Eglin AFB, Appendix 1 provides
examples of the improved image displays.

Finally, this one-year research effort resulted in four
publications (1,2,9,10) and four invited talks and lectures. 1In
October 1983, the principal investigator was an invited speaker
and session chairman at the IEEE International Conference on
Computer Design held in New York. At the 1984 annual Spring
meeting of the Mathematical Association of America's Florida
section in Tampa, an invited lecture was given on the connection
?etween digital topology and the image algebra. Two talks
éoncerning the algebra were given in April 1984, one at the
Conference on Intelligent Systems and Machines in Rochester,
Michigan, and the other at the 1984 Southeast Regional ACM

Conference in Atlanta, Georgia.




Summary and Recommendations

We constructed an algebra for image manipulations consisting

of eight binary operators. All image processing techniques
investigated during this research were expressible in terms of f,
this algebra, and it is our opinion that most, if not all, ?ﬁ
* current image manipulation techniques are Eranslatable into the
language of this algebra. However, this needs to be more
thoroughly documented.
Since very little is known about algebraic structures
f containing more than two operators, theorems, corollaries,
identities, and laws concerning compositions of different

operations need to be established. Such laws will not only be

| useful in terms of algorithm simplification but also provide

{ deeper insight and a better understanding of the algebra.
Following the establishment of such relationships and laws, a

E natural "next step" could be the application of these algebraic

: relationships for the optimization and testing of Government

furnished FLIR algorithms, and also as an aid in the development

of new image processing algorithms. The importance of such a

! fully developed algebra with regard to military applications

cannot be overestimated.
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THE LANGUAGE OF MASSIVELY PARALLEL IMACE PROCESSING COMPUTERS

Cerhard X.

Ritter

Departmeat of Mathewmatics
University of Florida
Cainesville, Florida 32611

AASTRACT

In this paper we define an image algebra
wvhose operators serve as the basis of a nev fmage
processing language. In co=parison to other
existing fzage algebras, this slgebra is capable
of expressing most comaon icage processing algor—
itros and transforms in terms of its operators.
The developaent of this algebra has been (nflu-
enced by the architectures of massively parallel
image processing systenms.

1. INTRODUCTION

About 25 years aga, Unger (16) proposed that
algorithas for image processing and analysis could
be izplecented in parallel using “cellular array”
ce=puters. Recent advances in VLS! technology now
peraits the tealizarion of such array cooputers,

4 detalled descriprion concerning the diversity
and genealogy of cellular array coaputers can be
found to (10).

For our purposes it suffices to observe that
cellular architectures icplement variations of von
Neuzann's automaton (15).

NASA's zassively parallel processor or MPP
(2), and the CLIP seriles of computers developed by
Duff (4) represent the classic eabodiment of voa
Neuzann's original autocaton. The CLIPS which
constitutes the latest {n the series of CLIP
cosputers, consists of an array of 9216 (96x96)
processors. Eaploying VSLI technology, sets of
elght processing elecenis are integrated on &
siozle chip,

The MPP also fntr.rates eight processing
eleaents per chip fn . rssecblage of 128x132
processing eleoents. irn distinction to the CLIP,
where each processin; . .-zent has the capability
of coc=unicating wit:. eight icmediate nefgh-
bors, an MPP process!:, .czent has connection to
only four i=oelfate ri .. turs as indfcated by the
solid lines ta Figure 1.

Cellular iaege processir; autositon of identical procassors
silh nearest neighbor connection

Figure 1}

Using these types of hardwired communication
links between neighboring processors, each pro=
tessor is responsible for one pixel (or one ele-
cent of the image), and 1is capable of perforzing
operations on the fmage vis {ts communications
links. These local operstions cen be cxpressed in
terms of neighborhood operators or ne:. warhoad
funtions and are perforced in parslle. c:. the
vhole icages and nefghborhoods (f.e. r.:-iczages
induced by the local windows). In th!s sense then
array processors impose a natural alg¢:ta on the
set of images and window configuraticns.

Several jmage algebras ewployiny ::iuvse
concepts already exist. Among these, . .:¢ ate
only three that mathezat{cians would call
“algebras”™ (7,13,14). However, cespite their
profound accocplishments, these alycirar are not
capable of expressing mast commor l{c-fe prucessing
operations such as Fourler transforcations, gray
scale averaging, and various edge ciieciion
techniques, In fact, the faflure of these
algebras to express a fairly straightforward U.S.
Covernment furnished FLIR algcrithm tLas been well
documented (B),




1n contrast, the image algebra developed by
this author (s capadle of expressing wost comnon
faage processing operations in terms of its
operators. The developament was wotivated by the
Alr Force's need for translating image processing
algorithms {nto s cozmon mathesatical language for
perforaonce characterization, documentation, and
algoritha sf{aplificacion,

In the next section we provide s rigorous
mathematical definition of this algebra, en-
dowing 1t with sufficient flexibilty for
inplementation oo future reconfigurable
neighborhood computers (3) as well as com
wntional serial izmage processing machines.

2. FUNDAMENTAL TEENMS

Henceforth, Z and C shall dencte the sets of
integers and cocplex numbers, fesrectlvely.
Although we could just as well have used the set
of reals instead of complex numbers, we obtain s
asrhemarically more useful and extensive structure
by eaploying the latter,

DEFINITION 2.1,

(1) s = {(x,y,2): x,yc2Z, z&C}.
(2) P(s) = [a: acs}).

The power set P(S) will represent our
universe of discourse. In particular, {wages will
be viewed as elecents of P(S).

Henceforth s = {x,y,z) and s' = (x',y',z")
vill denote eleaeats of S and A, B subsets of S.

DEYINTION 2.2,

(1) s and s" are satd to be related, denoted
by s ~¢, 1f x = x' and y = y', othervise s is
not _related to s', which is denoted by

s »s°,

2) A - {a€a: 2+ b for any beB)

and :\B-{ac.\: a ~ b for some beBJ,

(3) A is related to B, denoted by

A=Btf A =4 and B - 8.

(4) A called an fa3ape 1f whenever a,b€A

2a0d 8 ~ b, then a = b,

If ¢ 1s a cozplex number then the magnitude
of ¢ will be denoted by |c| and the real part of ¢
by r{(c). Civen two cogplex nunbers c and ¢, we
define the max{ou= and cinfmun of c and ¢°'

ss %' = max{r(c),r(c')}
snd cbc' = minfr(e),r{c')), respectively.

DEFPINITION 2.3
(1) The gray level sum of s and 8' 1s defined

as s(+)s' = (x,y,2+4z2') and tha
gray level product as s{x)s = {(x,y,zz').

(2) The maximum of s and ' 1s defined as
s{V)s' = (x,y,z2') and the the cininmum as
s(a)s' = (x,y,zn2'),

(3) If £ 1s a real or complex vslued function
on C, then the pixel functiong induced by f 1e
defined as f(s) = (x,y,f(2)). In particular,
we denote the absolute value or magnitude of s

by lll - (x,y,lzl), and exponentiation and

scalar miltiplication by s complex number c by

8¢ = (x,y,z%) and cs = (x,y,cz), respectively.

For finite subsets of S we alao define
the following four operations.

(4) s(+)A = s(+) (.a)a
(5) s(x)A = &(x) (-EA)'

(6) (A = 8(N(Ts

(7) s(A)j - l(A)(leA)n

Here the operation (+)s weens to add using +),
all of a€A. €A

Several comments are in order. First,
observe that the operations defined in (1) and (2)
are not comzutative. To further clarify (3),
consider examples such as sin(s) =~ (x,y,sinz)
exp(s) = (x,y,exp(z)) and Ln(s) = (x,y,1inz).
Finally, note the order in which the a's are added
io (4) ts {mzaterial since & is added on the
“left”, Thus, 1f A = {a,b,c), then s(+)A =
s(+)a(+)b(+} ¢ = s(+)c(+)a(+)b. The rame
bbservation holds for operations (5) through (7).

DEFINITION 2.4

A neishborhood function or neighborhood for §
18 a function h:S + P(S). The mathecatical image
N(s) of & point s€S 1s called the N nefghborhood
of s or, sizply, s neirhborhood of s. The
restriction of N to & subset A of S will be
denoted by N, and is called 8 neighborhood for
A. The deleted netc'barhood N'(s) 1s defined as
N'(8) = N(s) - (s8],

We are now 4ir the position of defining a
universal algchra which operates on subsets of S.

3. IMACE ALCEBRA

Af rertirned earlfier, the operands of our
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The algebrs T, defined in the previous
section, 1nizially evolved from the four nefighbor~
hood operations (Definition 3.3) as a need for
sathezatically descriding image processfng rout=
ines that are “natural” to cellular architectures.
Additton of the rematoing four srithmecic-logic
operstors, hovever, ytelds s wmore f{lexibdle
algedbra. 1o fact, the extended algebras provides a
unifora wethod for dewcribing most standard irare
transforas and fcage processing techniques in
terms of algebraic foroulae involviug only images
and the operations defining the algedbra. This ts
‘accosplished by analyring the basic cozponents and
operations constituting a given manipulation or
transform and then translating them into the
language C. Due to limiced space, we present
translatioos of ooly a fev well-known techniques,
oaritting more cooplicated algorithms, proofs and
verifications, all of which can be found on (1§).

4.1 [EDCZ DKTECTION

The edge detectioc 8Rd ethaicement techniques
described in (8) are easily translated into the
language of &, Ve provide two standard exanples.

Defining the deleted neighborhood function 'l

. - . - .
by Bi(a) = 5M) ey, g02(8HR) “ M,y | a(®)
peralts us to express the Kirsch edge detection
algoritha (6) as

»
K= 1% %) A(+)E] - A,
1=-0

vhere K denotes the enhanced fmage obrained from
A. The logarithaic edze detection schexze as
defined by wWallis (8,p.489) translates into:

~1

3
v = (ol 2o )™,
1=0

where A and W denote ::e input and output images,
respectively.

4.2 THRESHOLDINC

Stince (r1*)4 « fla b, red: (a,b.e) A}, the
im2ge obraloed froa thresholding A at . given by

3 = (r1*) A,

4.3 AVERACING FILTER

Suppose N(a) denotes the window with with
cester pixel a used for aver»ging A. Then
since A{+)S' = {a(+)N'(a): acA], the averaging

filter can be translated as B = n-l(A(ﬁ)N'), vhere
o represents the anumber of pixels in the window N
and B the output obtained from the fmage A.

4.4 CEOMETRIC FILTERS

As mentfoned In the Introduction, s falrly
successful Boolean izage oefghborhood algebra,
_ based on tvo fundacental operators, was inde-
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pendently developed by P.E. Miller (7), J. Serrs
(13) and S. Sternberg (14), The two fundsmental
operstors of this algedbra correspond to the
Minkowsk! addition and subtrsction of sete in
Euclidean space (12) and (S5). In the image
processing litersture the Minkowsk{ operstions are
comoonly referred to ss the expansion or dilation
and the erosfon or shrinking operstors. It turns
out that 1f N 1is sny neighborhood conffguration
and A .2 image, then the dilation of A by N
tranlates into A(Y)N and the erosion of A by N

into A(A)N. For exsmple, 1f N(a) = Mya46(a)

and A is as shown in Figure 2(a), then A(V)N
and A(AIN are as shown in Figure 2(b) and (c).
It follows that our slgebra generalizes the
Minkowski image algebra.

Two of the wost basic and far reaching
combinations of the Minkowski operations have
become known as the closing and opening
operations. A closing 1s an expansion followed by
a shrinking while an opening is s shrinking
followed by an expand. For A and N as in the last
example, the closing of A by N correspnds to
(A(V)N)(A)N and is shown in Pigure 2(d). Observe
that the result of s closing is a smoother image,
with the interior “holes™ (zeros) rewoved. 1In
many cases the closing filter exceeds the local
averaging filter on performance (1). .

00000000000000 00000010000000
0000010000000 00000111101100
‘000001 11101100 00111111111210
.00111111111000 01111111111100
100001100011000 001111113111100
.00000111111100 00001113111110
‘0000000001 0000 00000111)11100
00000000000000 00000000010000

(a) (v
00000000000000 00000000000000
00000000000000 00000010000000
00000010000000 00000111101100
©0000100000000 00111111111000
00000000000000 00001111111000
00000000010000 00000111111100
00000000000000 00000000010000
000000600000000 00000000000000

(e) (d)

Figure 2

4.5 THE FOURIEER TRANSPORM

As 8 final exazple we exazine the discrete
Pourier transorz (DFT) of & nxn image srray. The
usual definition of the DFT 1s given by

n-1 n-}
F(u,v) = (1/a) £ 1 ({f(x,y)
x=0 y=0

eypz-iﬁ/n)(u,y*vy)]),

where f(x,y) represents the gray level at position
(x,y).
In order to exjrens this tranaformation in

terns of vhole inages, we need to define wome
special lvages and neighborhoods:




algedra wll be tmages and neighborhoode (sub-
tasgjens and windovs)., DBefore defining the
operators of this algebra, we have nced to define
certaio special fasges.

DEFINTION 3.1,
(1) The zero fmage is defined
as 0 = [(x,y,2)€S: £z = O},
(2) The unit ioage 48 defined as
1= ((x,y,:)i S: z = l).
(3) If £ ts a res) or complex valued

function oo C, then the induced

fzage function F oo P(S) is defined as
F(A) = {f(s): a €A}, for each subset
A of S.

Here f denotes the pixel function induced by f.

Thus Exp(A) = LEEE(‘)’ a A} and Ln(A) =
{lo(a): acAl. 1o particular, the magnitude of
A is given by [Al - {lnl: ac A}. cA =
[ca: aiA} and A€ - {ac: ncA}. where c € C.
Thus, -A = {-a: acA} = {(x,y,~z):
(x,y,z2) €A} and A * {a-l: acAl e
{(x,y,1/2): (x,y,2) §A}. Note that the latter is
defined only 1f A n;O - ¢

We are oov ready to define the first four
birary operators of our algebra.

DEFINITION 3.2

Let A and B be inages and £ = Al ~ BA.J

(1) The grav level sum of A and B is
defined as A + B = {a{+3L: a <A,
beB, and s ~ b} VU E,

(2) The grav level product of A and B

1s defined as AsB = {a(x)b: acaA,
bcB, and a ~ b} « E.
(3) The maxicuz of A and B s defined

as ASB = {a(7)b: a€A, beB and
a~b}-E.
(4) The ninfoum of A snd B is

1s defloed as A%B ~ {a(i)b: .

4¢A, biB and a ~b] < E.

In cootrast to t'e operations defined in
Section 2, all the aluve uvperations are
coonutative and associative. In fact,

a0 o a, axtt -, aer ) = 0h,
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ana”) o 1A 4nd A" = ARAX...xA, where n 18 8
positive fnteger and the product consiets of
n-factors. Further properties and theorems
concerning these operations can be found in (10).
The next set of operations we sre about to
define fs a special set of neighborhood
operations. However, we point out that the neigh-
borhood N could be replasced by any subset B of S.

DEFINITION 3.3
Let N be a finite neighborhood of A. The

neighborhood sum, maximuw and minfmum of A and N
are respectively defined as:

(1) A(N = [a(+)N(a): aca)
(2) A(x)N = {a(x)N(a): acA}
(3) A(VK = [a(7)N(a): acA)
(4) ACBN = {-(A)Nk.): 2EA).

The universsl {mage algebras is now defined a»
the pair 0 = (J,T) vhere T =~ {+,x,9,8,(+),(x),
(¥v),(8)] and J denotes the set of images and
neighborhoods. Various properties of this algebra
have been explored in (10) and (11). The next
section provides but a small glance st the
potential of this algebra. The examples we give
should also provide sufficient insight into the
natural interaction of thie algebra with the
architecture and operations of cellular array \
cozputers. This is particulary evident when
considering the last four neigborhood operationse.

4. APPLICATIONS

Eight-neighbor logic operatione are some of
the most cozdon operations used in ioage pro~
cessing. These operations liend thecselves
particulary well to the type of array processor
architecture portrayed in Figure 1. The MPP
accomplishes eight-neighbor operations by shifting
over the entire array. We let ¥(a) denote the 3 x
3 neighborhood configuration corresponding to this
wiring, where "8~ denotes the center pixel., The
links of & processor to the immediate neighbor
.hoods can usually be controlled by on-off switch-
es, allowing the confipurations of different sudb-
nefghborhoods. It will be convenient to label the
corresponding subsets of M(a) by the counterclock—
wvise nuzbering convention, illustrated by the
following fi;.res:

3 1
M(a) =& & O H0l7(a) -a0
5 7 7

2
ue(8) =4 a 0

In particuisz, M = HO12 ? corresponds to CLIP's
nefghtorhood circuitry, while HOZG& to the neigh-
borhood arranperent of the MPP,
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(1) 2 = {(s,y,2) €81 2 = z} and
T - He.,y,2) S 2 =y}

(11) E(u,v) = Exp{(-2xt/a)(ux+v¥)},
vhere, u,v€Z,

The Fourier neighborhood function of an

oxn isage is defined as the function F‘OA
* P(S), where l‘(u,v.o) = AxE(y,v).

The Fourler transformed f{mage, F(A), of A can
thea be expressed by the siople foruula

A
1) = 0N or,
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